

Radiochemcial Analysis for Characterization of Decommissioning waste

Xiaolin Hou

Technical University of Denmark Center for Nuclear Technologies, Risø Campus, Roskilde, Denmark

DTU Nutech Center for Nuclear Technologies NKS Radworkshop 2018

718281828

Radiochemcial Analysis for Characterization of Decommissioning waste

Xiaolin Hou

Technical University of Denmark

Center for Nuclear Technologies (DTU Nutech), Risø Campus, Roskilde, Denmark

DTU Nutech Center for Nuclear Technologies

Process of decommissioning nuclear facilities

Major Radionuclides in the nuclear waste

Difficult-to-measure radionuclides

- β- Emitter
 - ³H, ¹⁴C, ³⁶Cl, ⁴¹Ca, ⁵⁵Fe, ^{63, 59}Ni, ⁹³Zr, ⁹³Mo, ⁹⁰Sr, ⁹⁹Tc, ¹²⁹I, ²⁴¹Pu, etc.
- α- emitter (actinides)
 - ²³⁸⁻²⁴⁰Pu, ²⁴¹Am, ^{243,244}Cm, ²³⁷Np, etc.

Waste types in decommissioning of nuclear facilities

• Large volume and common waste:

- Concrete (normal or heavy)
- Graphite (reactor)
- Steel/stainless steel
- Evaporator concentrate
- Ion exchange resin

Unconventional waste

- Non-ferrous metals (Al, Pb, Cu)
- Zirconium and its alloy
- Mercury
- Plastics (PCB, PE, etc.)
- Oil
- Desiccant (silica gel, CaO, etc.)

Challenges on radiological characterization of decommissioning waste

- Complicated and unknown components of sample matrix
- Instability of the volatile radionuclides in sampling, storage and pre-treatment
- Difficulties in decomposition and pretreatment of some sample matrix
- Different species of critical radionuclides related to their different mobility
- High radiation exposure and large number of samples
- Lack of reliable method for accurate determination of some radionuclides
- No standards for some radionuclides (e.g. ⁹³Zr, ⁹³Mo, etc.)

Strategies on radiochemical analysis of decommissioning waste

- Reliable radiochemcial analytical methods for difficult to measure radionuclides (⁴¹Ca,⁵⁵Fe, ⁶³Ni, ⁹³Mo^{, 93}Zr, actinides)
- Methods for accurate determination of volatile radionuclides (³H, ¹⁴C, ³⁶Cl, ⁹⁹Tc, ¹²⁹I)
- Rapid methods for separation and analysis of difficult to measure radionuclides --Automated approaches
- Sensitive measurement of low level and long-lived radionuclides using mass spectrometric techniques (ICP-MS & AMS)
- Speciation analysis of important radionuclides in view of depository of waste (mobile species, e.g. ³H, ¹⁴C, ⁹⁹Tc)

Radiochemcial analysis for difficult to measure radionuclides

- ⁴¹Ca in concrete
- > ⁵⁵Fe and ⁶³Ni in metals, concrete, graphite, etc.
- > ⁹⁰Sr in exchange resin, sludge, metals, etc.
- Actinides (^{238, 239,240,241}Pu, ²³⁷Np, ²⁴¹Am, ^{233, 234}Cm)
- > ⁹³Mo, ⁹³Zr in metals and exchange resin
- ¹³⁵Cs, ⁷⁹Se, ¹²⁶Sn, ¹⁴⁷Pm, ¹⁵¹Sm in metal, ion exchange resin, etc.

⁴¹Ca in the concrete

Activation products of calcium isotopes

Nuclide	Target isotope Aboundance %	Reaction	Cross section, bar	Half life	Decay
⁴¹ Ca	96.94	⁴⁰ Ca(n, γ) ⁴¹ Ca	0.41	1.03×10⁵ y	EC
⁴⁵ Ca	2.086	⁴⁴ Ca(n, γ) ⁴⁵ Ca	0.84	162.7 d	β-
⁴⁷ Ca	0.004	⁴⁶ Ca(n, γ) ⁴⁷ Ca	0.7	4.54 d	β, γ
⁴⁹ Ca	0.187	⁴⁸ Ca(n, γ) ⁴⁹ Ca	1.0	8.72 min.	β, γ

Energy of X-rays and Auger electrons : 0.3-3.6 keV Determination: X-ray spectrometry (<0.08%) LSC (10-20%)

Separation of Ca from Ba, Sr, Ra by hydroxide

Separation of Sr from Ca by Ca(OH)₂ precipitation

- Ca(OH)₂: insoluble, Ksp = 5.2 × 10⁻⁶
- Sr(OH)₂ and Ba(OH)₂: Soluble in alkine solution

Precipitate Ca as Ca(OH)₂ at 0.5–0.8 M NaOH, repeat 3 times

- ✓ Ca recovery: 85%
- Decontamination factors for Sr and Ba:
 > 5x10⁴

Procedure for determination of⁴¹**Ca**

Hou X.L., Radiochim Acta, 2005

⁴¹Ca in heavy concrete

- Good decontamination for interferences: >10⁵
- Good chemical yields for ⁴¹Ca: 80-90%
- Good detection limit for ⁴¹Ca: 0.020 Bq

⁶³Ni and ⁵⁵Fe


```
• <sup>55</sup>Fe:
```

```
- {}^{54}Fe(n, g){}^{55}Fe (s=2.3 b; h<sub>54Fe</sub>=5.85%)
- {}^{56}Fe(n, 2n){}^{55}Fe, (h<sub>56Fe</sub>=91.75%)
```

```
• {}^{63}Ni:
- {}^{62}Ni(n, \gamma){}^{63}Ni (s=14.5 b; h<sub>62Ni</sub>=3.63%)
- {}^{63}Cu(n, p){}^{63}Ni, ( h<sub>63Cu</sub>=69.17%)
```


Major Challenge:

High ⁶⁰Co and ⁵⁸Co activity in most samples

Separation of Ni from Co, Eu, etc. using ion

exchange chromatography and Ni column (DMG)

Element	Recovery or decontamination factor	
Ni ²⁺	> 98.5%	
Fe ³⁺	>10 ⁶	
Co ²⁺	>106	
Ba ²⁺	>106	
Eu ³⁺	>106	
Cs ⁺	>10 ⁶	
Sr ²⁺	>106	

Ni + Co absorbed or Ni Colu mium Lierate (lowe) Eluting Co with 0.2 M

Hou, et al. Anal. Chim. Acta, 2005

⁵⁵Fe and ⁶³Ni in concrete core from DR-3

Radiochemcial analysis of volatile radionuclides

- ³H and ¹⁴C in solid waste (metals, concrete, graphite, etc.)
- ➢ ³⁶Cl in metals, graphite, concrete, etc.
- ¹²⁹I in solid waste (exchange resin, evaporator, etc.)
- > ⁹⁹Tc in liquid and solid waste
- ➢ ^{103, 106}Ru, ²¹⁰Po, etc.

Main challenge: loss of radionuclides during sampling, pre-tratement and separation. Stratege: Application of combustion for their separation

Rapid separation of ³H and ¹⁴C waste samples by combustion using Packard Oxidizer

³H and ¹⁴C measurement

No other impurity nuclides, no cross contamination.

- Analytical time: 2 min/sample + counting time
- Detection limits:
 - ¹⁴C: 0.1 Bq
 - ³H: 0.15 Bq

Hou., Appl. Rad. Iso., 2005 Hou, JRNC, 2008

³⁶Cl and ¹²⁹l

- Iodine and chlorine are volatile, easy to be lost during heating or by oxidizing.
- ³⁶Cl and ¹²⁹l are long-lived radionuclides (0.3 My, and 15.7 My)
- Iodine and chlorine are high mobile in environment.
- Iodine and chlorine are biophilic.

1-Heating mantle; 2-three-necked flask; 3-sample in acid mixture; 4-bubbling tube; 5-separating funnel for adding acids; 6,7-reflux condenser; 8- receiver; 9wash bottle containing water; 10, 11-absorption bottles containing 0.4 mol/l NaOH

Analytical procedure for ³⁶Cl and ¹²⁹l

Hou et al., Anal. Chem., 2007

Determination of ³⁶Cl

- Recovery of Cl: >70%
- Decontamination factors
 for most of radionculides:
 >10⁶
- Detection limit using LSC : 14 mBq

Combustion method for solid samples: concrete, graphite, metals, resin, sludge, etc.

✓ ³H
 ✓ ¹⁴C
 ✓ ¹²⁹
 ✓ ³⁶CI
 ✓ ⁹⁹Tc

Hou et al., Anal. Chem., 2010 Hou, et al. JAAS, 2016 Rapid separation and analysis of difficult to measure radionuclides by Automatation approach

- Reduce the radiation exposure for high radioactive samples
- Quick analysis of large number of samples
- Reduce the cost of analysis
- Apply for on-line analysis in site

Sequentical injection approach for automated separation of radionuclides

Qiao, Hou, et al., Anal. Chem., 2009

Determination of ⁹⁹Tc by on-column separation sequential injection approach

Shi, Hou, et al. Anal. Chem. 2012

Flow injection approach for automated separation of multi-radionuclides separation in multi-samples

Qiao, Shi, Hou, et al. ES&T 2014

Determination of ²³⁹Pu, ²⁴⁰Pu, ²³⁷Np by On-column separation using sequential injection approach

Qiao, Hou, et al. Anal. Chem. 2011

Sensitive measurement of radionucides

ICP-MS: Inductively coupled plasma mass spectrometry

- AMS: Accelerator mass spectrometry
- TIMS: Thermal ionization mass spectrometry
- **RIMS:** Resonance ionization mass spectrometry
- SIMS: Secondary ion mass spectrometry
- GDMS: Glow discharge mass spectrometry

Present progress on measurement of radionuclides by mass spectrometry

ICP-MS is becoming a popular and often used technique for measurement of long-lived radionuclides.

- ²³⁹Pu, ²⁴⁰Pu, ²³⁷Np, ⁹⁹Tc, ²²⁶Ra, ⁹⁰Sr, ¹³⁵Cs
- Increased sensitivity and improved detection limit down to ppq or fg level measurement
- Improved abundance sensitivity (10⁻¹⁰) and double reaction/collision cells for tailing and isobar elimination.
- Increasing application of AMS for measurement of long-lived radionuclides
 - ¹⁴C, ¹⁰Be, ²⁶Al, ¹²⁹I, ³⁶Cl, ²³⁶U, ²³⁹Pu, ²⁴⁰Pu, ²³⁷Np, ²⁴³Cm, ²⁴⁴Cm, etc.
 - Table-top AMS for ¹⁴C
 - AMS with reaction cell for remove the interference

Improved detection limit in ICP-MS

- Increased sensitivity
- Spectral interferences
 - ✓ Isobar (¹³⁵Ba-¹³⁵Cs, ⁹⁹Ru-⁹⁹Tc, ¹²⁹Xe-¹²⁹I)
 - ✓ Molecular ions (argides, hydride, oxides, etc.
- Instrumental limitation

Nuclide	Detection limit, Bq				
	Radiometric	AMS	ICP-MS	New ICP-MS	
129	17 mBq	10 ⁻⁶ mBq	0.1 mBq	0.01 mBq	
⁹⁹ Tc	5 mBq		1.5 mBq	0.2 mBq	
¹³⁵ Cs				0.5 mBq	
²³⁷ Np	0.1 mBq	3x10⁻⁵ mBq	2x10 ⁻⁴ mBq		
²³⁹ Pu	0.1 mBq	0.003 mBq	0.017 mBq	0.7x10 ⁻³ mBq	
²⁴⁰ Pu	0.1 mBq	0.010 mBq	0.063 mBq	2.5x10 ⁻³ mBq	

Abundance sensitivity in ICP-MS

- Aboundance sensitivity is the ability of the instrument to detect a weak signal direct adjacent to a strong neighbouring peak.
- Defined as: $S = S_{m-1}/S_m$ or $S = S_{m+1}/S_m$, Normally ranges in 10⁻⁷-10⁻⁴

Improvement of abundance sensitivity and interference removal in ICP-MS

Agilent 3Q ICP-MS (or MS/MS technique)

Zheng, et al. Anal. Chem. 2014

Measurement of atom level radionuclides by Accelerator Mass Spectrometer (AMS)

• ¹⁴C • ³H • ¹⁰Be • ²⁶Al • ³⁶Cl, • ⁴¹Ca • ⁹⁹Tc • ⁵⁹Ni, • ⁷⁹Se, • ¹²⁶Sn • 129 • 236U • ²³⁹Pu • ²⁴⁰Pu • ²³⁷Np • ²⁴³Cm

• ²⁴⁴Cm

Measurement Method for ¹²⁹I and their detection limits

Method	Detection limit		
	¹²⁹ I, atoms	¹²⁹ I, mBq	¹²⁹ I/ ¹²⁷ I Ratio
Liquid scintillation	10 ¹³	10 mBq	
γ-spectrometry	10 ¹³	10 mBq	
ICP-MS	2×10 ¹¹	0.4 mBq	10 ⁻⁶
Radiochemical neutron activation	10 ⁸	0.2 mBq	10 ⁻¹⁰
analysis			
Accelerator mass spectrometry (AMS)	10 ⁵	0.1 nBq	10 ⁻¹⁴

2018

Analytcial procedure of ¹²⁹I and ¹²⁷I in solid samples

Determination of ¹²⁹I in evaporation concentrate and anion exchange resin using LSC

- 5 g samples was used for analysis
- ¹²⁹I is not measureable in evaporator concentrate samples,
- ¹²⁹I in ion exchange resin is measred by high uncertainty (<10 mBq/g)

Determination of ¹²⁹I in evaporation concentrate and anion exchange resin using AMS

		129		
		concentration,		
Sample	Sample ID	mBq/g		
		Value	Unc.	
Evaporator concentrate	EC-1	0.0110	0.0012	
Evaporator concentrate	EC-2	0.0070	0.0008	<0.1 g sample was used
Evaporator concentrate	EC-3	0.0122	0.0014	for analysis Ld =0.00001 mBq/g
Evaporator concentrate	EC-4	0.0128	0.0014	
ion exchange resin	ICR-1	0.0083	0.0012	
ion exchange resin	ICR-2	3.318	0.301	
ion exchange resin	ICR-3	3.860	0.352	
ion exchange resin	ICR-4	4.179	0.376	12 October

39

Acknowledgement

- Jixin Qiao, Keliang Shi, Sven Nielsen, Per Roos, Szabolcs
 Osvath, Radioecology section, Hevesy laboratory, DTU-Nutech
- Danish Decommissioning (DD)
- Villum Kann Rasmussen Foundation
- Nordic Nuclear Safety Research (NKS)

Thank you for your attention !